The Whitehouse Lab


The Whitehouse Lab |  | Directories | University of Leeds



Whitehouse Lab: Research Interests

Viruses and Cancer

Infection is a major cause of cancer worldwide. Viruses are associated with ~15% of human cancers, which approximates to about 2 million new cases very year in the world. Research in the the Whitehouse laboratory aims to understand how viruses cause cancer and develop novel antiviral staratgies to prevent infection and tumourigenesis. We focus on studying the molecular biology of the two most recently discovered human tumour viruses.

(i) Kaposi's sarcoma associated herpesvirus (KSHV)

This is an oncogeneic herpesviruses which has been associated with a variety of lymphoproliferative disorders including Kaposi's sarcoma (KS), primary effusion lymphoma and multicentric Castleman's disease. Widespread HIV infection has now turned KS into an epidemic disease in Africa. KS is now the most common adult tumour in parts of Africa. Like other herpesviruses, KSHV has two distinct forms of infection, latency and lytic replication. Although latency has been implicated in tumourigenesis, reactivation and lytic replication play an important part in the pathogenesis and spread of KSHV infection. Therefore, we have a major research focus to study the molecular mechanisms which regulate reactivation and lytic gene expression to provide a better understanding of KSHV pathogenesis. Moreover, these projects will provide valuable information on the host cell-virus interactions which may ultimately lead to the identification of specific antiviral targets which could be developed as novel treatments for this important human pathogen.

(ii) Merkel cell polyomavirus (MCPyV)

Merkel cell carcinoma (MCC) is a highly aggressive human cancer of the skin that occurs in elderly and immunosuppressed patients. Merkel cell polyomavirus was discovered in 2008 and is present in 80% of human Merkel cell carcinomas. Therefore, MCPyV is likely to have a causative role in MCC. Due to its recent discovery, little is known about the link between MCPyV and MCC. Therefore, we are currently investigating the role of MCPyV encoded proteins in transformation and immortalisation of human cells.

Current Projects

1. Identification of essential virus-host cell interactions which are required for virus replication or transformation.

We are utilising a range of cutting-edge transcriptomic and quantitative proteomic approaches to globally identify how viral proteins affect the cellular environment. These interactions can then be verified using biochemical and con-focal imaging techniques. This is helping to identify essential virus-host cell interactions which we can target by novel antiviral strategies to inhibit virus replication and transformation.
We are particularly interested in virus-host cell interactions which
i. Regulate reactivation in Kaposi's sarcoma associated herpesvirus
ii. Regulate virus RNA processing
iii. Immune evasion strategies employed by oncogenic viruses
iv. Virus-host cell interactions required for the aggressive metastatic potential of some virus-induced cancers

2. Structural-based rational drug design approaches to inhibit oncogenic viruses.

To date, there are limited antiviral strategies for oncogenic viruses. Although vaccines have been developed for a few of these viruses, these are not available for all the 7 oncogenic viruses, incluing KSHV and MCPyV. Therefore novel antiviral straetgies are required to combat these important human pathogens. Upon identification of essential virus-host cell interactions using transcriptomic and quantitative proteomic approaches, we utilise a structural-based rational drug design approach to molecular model and design small molecules to inhibit these interactions. Virtual high-throughput screening campaigns are conducted from a large libraries of commercially available compounds. Docking routines and ligand-similarity searches are utilised to design compounds which have the potential to inhibit these essential virus-host cel interactions. Once the virtual high-throughput screening campaign has been performed selected compounds are then assessed in virus-based assays for antiviral activity.

Research is currently funded by BBSRC (PDRAs and PhDs), MRC (PDRA and PhDs), Worldwide Cancer Research (PDRA), Royal Society GCRF (PDRA), Rosetrees Trust (PhD) and Wellcome Trust (PhD).

A list of recent publications from the laboratory are listed at Recent publications


Whitehouse Lab: Current Members

Ade Whitehouse : Professor of Molecular Virology

Amy Barker : Postdoctoral Fellow

Sophie Schumann : Postdoctoral Fellow

Tim Mottram : Postdoctoral Fellow

Zoe Jackson : Postdoctoral Fellow

Sarah Kidd : Postdoctoral Fellow

Becky Foster - PhD student

Oliver Manners - PhD Student

James Murphy - PhD Student

Holli Carden - PhD Student

Katie Harper : PhD Student

Euan McDonnell : PhD Student

Freddy Weaver : PhD Student

Ellie Harrington : PhD Student


Lab Alumini

Belinda Baquero-Perez : Belinda has moved back to Spain and postdocing in Barcelona

Sam Dobson : Sam is now a postdoc with Nic Stonehouse in Leeds

Nnenna Nwogu : Nnenna is now postdocing in Pittsburgh

Alex Coleman : Alex is now a LIDA Data Scientist Intern

Gabriele Stakaityte : Gabriele has taken up a NHS clinical scientist training post

Noor Suhana Adzahar : Suhana has returned to a Teaching position in Malaysia

Anja Berndt : Anja has taken a position up at BBSRC head office

Laura Knight : Laura has taken up a NHS clinical scientist training post

Chris Owen : Chris is a Scientist at Qiagen, Manchester

Brian Jackson : Brian is now the Facility manager of the new Protein Production Facility, FBS, Leeds

Dave Hughes : Dave is now a Lecturer at St Andrews

Jen Wood : Jen is postdocing in London at Imperial College

Hannah Brown : Hannah is a Medical Writer at Fishawack

Marko Noerenburg : Marko is postdocing in Oxford

Dave Griffiths : Dave is a Medical Writer

Stuart Macnab : Stuart now works for Novartis

Adam Taylor : Adam is postdocing in Australia

Susie Turrell : Susie is a Medical Writer

Jim Boyne : Jim is a Lecturer at Bradford University

Faye Gould : Faye is a Medical Writer

Kevin Colgan : Kev is a Senior Scientist, Qiagen, Manchester

Sally Harrison : Sally is continuing his postdoc studies at LIMM

Rhos Griffiths : Rhos is a programme manager for the MRC

Mike Calderwood : Mike is a Lead scientist at Dana-Farber Cancer Institute, Boston

Rob White : Rob is now a Lecturer at Imperial working on EBV

Matt Walters : Matt went to New York to do a postdoc on VZV

Pete Smith : Pete now works in industry in Boston

Kerst Hall : Kerst has just completed a Master in the History of Science

Matt Giles : Matt was a clinical fellow and has returned to Surgery

Matt Cooper : Matt is a Principle Fellow co-ordinating clinical trials for the National Cancer Research Network

Alex Stevenson : Al is a a director at Aquarius Equity Partners

Del Goodwin : Del is a clinical trials co-ordinator for Astra Zeneca

PhD Opportunities

There are several ways to apply for a PhD in the Whitehouse laboratory.

Funded PhD places:

Home-rated students : BBSRC White Rose Doctoral Training Partnership in Mechanistic Biology and MRC Discovery Medicine North Doctoral Training Partnership. More information can be found at FBS Grad school.

These are four year fully funded PhD studentships which  provide both stipend and fees. This scheme is highly competitive so please only apply if you are in possession of, or are predicted to get, either an upper second or first class honours degree.  Under this scheme you would spend four years in the Whitehouse laboratory.

Current project advertised to start in October 2020 on the BBSRC DTP scheme in the Whitehouse laboratory:

How do viral m6A methylated mRNAs recruit specific host cell reader proteins?

Role of RNA modifications in virus infection

Self-funded students:

International or domestic self-funded or scholarship/fellowship PhD students are always welcome to apply for a place in the Whitehouse laboratory.  Again, you must be in possession of, or are predicted to get, either an upper second or first class honours degree from a internationally renowned university. In addition, international students must have a good command of both written and spoken English. Most importantly, bench fees will be required if you are self-funded. Under this scheme you would spend either three or four years in the Whitehouse laboratory.

Please for informal enquiries. More information can also be found at PhDdegrees

Recent publications

Publications from the Whitehouse laboratory


  1. Baquero-Pérez, B., Antanaviciute, A., Yonchev, I.D., Carr, I.M., Wilson, S.A. & Whitehouse, A. (2019). The Tudor SND1 protein is an m6A RNA reader essential for KSHV replication. eLife, 8:e47261.

  2. Smith, A.J., Wright, K.E., Muench, S.P., Schumann, S., Whitehouse, A., Porter, K.E. & Colyer, J. (2019). Styrene maleic acid recovers proteins from mammalian cells and tissues while avoiding significant cell death. Scientific Reports, In Press.
  3. Manners, O., Baquero-Perez, B. & Whitehouse, A. (2019). Epitranscriptomics: widespread regulatory control in virus replication. BBA Gene Regulatory Mechanisms, 1862, 370-381.

  4. Harper, K.L., McDonnell, E. & Whitehouse, A. (2019). CircRNAs: from anonymity to novel regulators of gene expression in cancer. International Journal of Oncology, 55, 183-193.


  1. Bussey, K.A., Lau, U., Schumann, S., Gallo, A., Osbelt, L., Stempel, M., Arnold, C., Wissing, J., Gad, H.H., Hartmann, R., Brune, W., Jänsch, L., Whitehouse, A. & Brinkmann, M.M. (2018). The interferon-stimulated gene product oligoadenylate synthetase-like protein enhances replication of KSHV and interacts with the KSHV ORF20 protein. PLoS Pathogens, 14(3):e1006937.

  2. Nwogu, N., Boyne, J.R., Dobson, S.J., Poterlowicz, K., Blair, G.E., Macdonald, A., Mankouri, J. & Whitehouse, A. (2018). Cellular sheddases are induced by Merkel Cell Polyomavirus Small Tumour Antigen to mediate cell dissociation and invasiveness. PLoS Pathogens, 14(9):e1007276.

  3. Stakaityte, G., Nwogu, N., Lippiat, J.D., Blair, G.E., Poterlowicz, K., Boyne, J.R., Macdonald, A., Mankouri, J. & Whitehouse, A. (2018). The cellular chloride channels CLIC1 and CLIC4 contribute to virus-mediated cell motility. Journal of Biological Chemistry, 293, 4582-4590.
  4. Stakaityte, G., Nwogu, N, Dobson, S.J., Knight, L.M., Wasson, C.W., Salguero Bodes, F.J., Blackbourn, D.J., Blair, G.E., Mankouri, J., Macdonald, A. & Whitehouse, A. (2018). Merkel cell polyomavirus small T antigen enhances cell motility via Rho-GTPase induced filopodia formation. Journal of Virology, 92:e00940-17.
  5. Manners, O., Murphy, J., Coleman, A., Hughes, D.J. & Whitehouse, A. (2018). Contribution of the KSHV and EBV Lytic Cycles to Tumourigenesis. Current Opinions in Virology, 32, 60-70.


  1. Schumann, S., Jackson, B.R., Yule, I., Whitehead, S.K., Foster, R. & Whitehouse, A. (2017). Targeting the ATP-dependent formation of herpesvirus ribonucleoprotein particle assembly as an antiviral approach. Nature Microbiology, 2:16201.
  2. Hughes, D.J.,  Tiede, C.,  Penswick, N.,  Tang, A.A.S., Trinh, C.H., Mandal, U., Zajac, K.Z., Gaule, T., Howell, G., Edwards, T.A., Duan, J., Feyfant, E., McPherson, M.J., Tomlinson, D.C. & Whitehouse, A. (2017). Generation of specific inhibitors of SUMO1- and SUMO2/3-mediated protein-protein interactions using Affimer (Adhiron) technology. Science Signalling, 10, eaaj2005.
  3. Antanaviciute, A., Baquero-Perez, B., Watson, C.M., Harrison, S.M., Lascelles, C., Crinnion, L., Markham, A.F., Bonthron, D.T., Whitehouse, A. & Carr, I.M. (2017). m6aViewer: software for the detection, analysis and visualisation of N6-methyl-adenosine peaks from m6A-seq/ME-RIP sequencing data. RNA, 23, 1493–1501.
  4. Abdul-Sada, H., Bhardwaj, R., Toth, R., Arthur, J.S.C., Whitehouse, A. & Macdonald, A. (2017). The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-ĸB by Merkel Polyomavirus small Tumour antigen. Oncotarget, 8, 25418-25432.
  5. Schumann, S. & Whitehouse, A. (2017). Targeting the human TREX complex to prevent herpesvirus replication: what is new? Future Virol., 12, 81–83.


  1. Wood, J.J., Boyne, J.R., Paulus, C., Jackson, B.R., Nevels, M.M., Whitehouse, A. & Hughes, D.J. (2016). ARID3B: A novel regulator of the Kaposi’s sarcoma-associated herpesvirus lytic cycle. Journal of Virology, 90, 9543-9555.
  2. Schumann, S., Baquero-Perez, B. & Whitehouse, A. (2016). Interactions between KSHV ORF57 and the novel human TREX proteins, CHTOP and CIP29. Journal of General Virology, 97, 1904-10.


  1. Hughes, D.J., Wood, J.J., Jackson, B.R., Baquero-Perez, B. & Whitehouse, A. (2015). NEDDylation is essential for Kaposi's sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target. PLoS Pathogens, 11(3):e1004771.
  2. Baquero-Perez, B. & Whitehouse, A. (2015). Hsp70 isoforms are essential for the formation of KSHV replication and transcription compartments. PLoS Pathogens, 11(11):e1005274.
  3. Whitehouse, A. & Macdonald, A. (2015). Stathmin drives virus-induced metastasis. Oncotarget, 6, 32289-32290.
  4. Knight, L.M., Stakaityte, G., Wood, J.J., Griffiths, D.A., Howell, G.J., Abdul-Sada, H., Wheat, R., Blair, G.E., Macdonald, A., Blackbourn, D.J. & Whitehouse, A. (2015). Merkel cell polyomavirus small T antigen mediates microtubule destabilisation to promote cell motility and migration. Journal of Virology, 89, 35-47.
  5. Liu, L., Lear, Z., Hughes, D.J., Wu, W., Zhou, E.M., Whitehouse, A., Chen, H. & Hiscox, J.A. (2015). Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology. Vet Micro., 176, 109-19.


  1. Jackson, B.R., Norenberg, M. & Whitehouse, A. (2014). A novel mechanism inducing genomic instability in Kaposi’s sarcoma-associated herpesvirus infected cells. PLoS Pathogens, 10(5): e1004098.
  2. Stakaityte, G., Wood, J.J., Knight, L.M., Abdul-Sada, H., Azdahar, N.S., Nwogu, N., Macdonald, A. & Whitehouse, A. (2014). Merkel cell polyomavirus: insights into the mostly discovered human tumour virus. Cancers, 6, 1267-1297.
  3. Owen, C.B., Hughes, D,J., Baquero-Perez, B., Berndt, A., Schumann, S., Jackson, B.R. & Whitehouse, A. (2014). Utilising proteomic approaches to understand oncogenic herpesviruses. Molecular and Clinical Oncology, 2, 891-903.
  4. Akhbari, P., Whitehouse, A. & Boyne, J.R. (2014). Long non-coding RNAs drive metastatic progression in melanoma. Int J Oncol. 45, 2181-2186.


  1. Brown, H.F., Unger, C. & Whitehouse, A. (2013). Potential of Herpesvirus saimiri-based vectors to generate induced pluripotent cancer stem cells. Journal of Virology, 87, 7127-7139.
  2. Emmott, E., Munday, D., Bickerton, E., Britton, P., Rodgers, M.A., Whitehouse, A., Zhou, E.M. & Hiscox, J.A. (2013). The cellular interactome of the coronavirus infectious bronchitis virus nucleocapsid protein and functional implications for virus biology. Journal of Virology, 87, 9486-9500.
  3. Griffiths, D.A., Abdul-Sada, H., Knight, L.M., Jackson, B.R., Richards, K., Prescott, E.L., Peach, A.H.S., Blair, G.E., Macdonald, A. &  Whitehouse, A. (2013). Merkel cell polyomavirus small T antigen targets the NEMO adaptor protein to disrupt inflammatory signalling. Journal of Virology, 87:24 13853-13867.
  4. Schumann, S., Jackson, B.R., Baquero-Perez, B. & Whitehouse, A. (2013). Kaposi’s sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses, 5, 1901-23.
  5. Ingram, N., Macnab, S.A., Marston, G., Scott, N., Carr, I.M., Markham, A.F., Whitehouse, A. & Coletta, P.L. (2013). The use of high-frequency ultrasound imaging and biofluorescence for in vivo evaluation of gene therapy vectors. BMC Medical Imaging, 13:35.


  1. Turrell, S,J., Filby, M.H., Whitehouse A. & Wilson, A.J. (2012). Cellular Uptake of Highly-Functionalized Ruthenium(II) tris-Bipyridine Protein-Surface Mimetics. Bioorganic & Medicinal Chemistry Letters, 15, 985-988.
  2. Munday DC, Surtees R, Emmott E, Dove BK, Digard P, Barr JN, Whitehouse A, Matthews D, Hiscox JA. (2012). Using stable isotope labeling with amino acids in cell culture (SILAC) and quantitative proteomics to investigate the interactions between viruses and viral proteins and host cells. Proteomics, 12, 666-672.
  3. Turrell, S.J.,  Macnab, S.A., Rose, A., Melcher. A.A. & Whitehouse, A. (2012). A Herpesvirus Samiri-based vector expressing TRAIL induces cell death in human carcinoma cell lines and multicellular spheroid cultures. International Journal of Oncology, 40, 2081-2089.
  4. Jackson, B.R., Norenberg, M. & Whitehouse, A. (2012). The Kaposi’s sarcoma-associated herpesvirus ORF57 protein and its multiple roles in mRNA biogenesis. Future Microbiol., 3, 59.
  5. Dyson, O., Walker, L., Whitehouse, A., Cook, P. & Akula, S,M. (2012). Resveratrol inhibits KSHV reactivation by lowering the levels of cellular EGR-1. PLoS One, 7(3), e33364.


  1. Tunnicliffe, R.B., Hautbergue, G. M., Kalra, P., Jackson, B.R., Whitehouse, A., Wilson, S.A. & Golovanov, A.P. (2011). Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57. PLoS Pathogens, 7(1), e1001244.
  2. Jackson, B.R., Boyne, J.R., Norenberg, M., Taylor, A., Hautbergue, G.M., Walsh, M.J., Wheat, R., Blackbourn, D.J., Wilson, S.A. & Whitehouse, A. (2011). An interaction between KSHV ORF57 and UIF provides mRNA-adaptor redundancy in herpesvirus intronless mRNA export. PLoS Pathogens, 7(7), e1002138.
  3. Taylor, A., Jackson, B.R., Noerenberg, M., Hughes, D.J., Boyne, J.R., Verow, M., Harris, M. & Whitehouse, A. (2011). Mutation of a C-terminal motif affects KSHV ORF57 RNA binding, nuclear trafficking and multimerisation. Journal of Virology, 85, 7881-7891.
  4. Hong, Y., Macnab, S., Dawson, L.A., Turner, A.J., Whitehouse, A. & Usmani, B.A. (2011). HVS-based ECE-1 siRNA expression decreases prostate cancer cell invasion and migration. International Journal of Cancer, 129, 586-598.
  5. Turrell, S.J. & Whitehouse, A. (2011). Mutation of Herpesvirus saimiri ORF51 glycoprotein specifically targets infectivity to Hepatocellular Carcinoma cell lines. Journal of Biomedicine and Biotechnology, 2011 : 785158.
  6. Macnab, S., Turrell, S.J., Carr, I.M., Markham, A.F., Coletta. P.L. & Whitehouse, A. (2011). Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. International Journal of Oncology, 39, 1173-1181.
  7. Khandelwal, N., Simpson, J., Taylor, G., Rafique, S., Clarke, C., Whitehouse, A., Hiscox, J.A. & Stark, L.A. (2011). Nucleolar NF-kB/RelA promotes apoptosis by causing cytoplasmic  relocalisation of nucleophosmin(B23). Cell Death and Differentiation,18, 1889-1903.
  8. Whitehouse A. (2011). Production of recombinant Herpesvirus saimiri-based vectors. Cold Spring Harb Protoc. 12, 1515-1519.
  9. Whitehouse A. (2011). Assessment of infectivity using a Herpesvirus saimiri (HVS) recombinant that expresses HVS-GFP. Cold Spring Harb Protoc. 12, 1520-1523.
  10. Whitehouse A.(2011). Gardella gel analysis to detect Herpesvirus saimiri episomal DNA. Cold Spring Harb Protoc. 12, 1524-6.


  1. Boyne, J.R., Jackson, B.R., Taylor, A., Macnab, S.A. & Whitehouse, A. (2010). Kaposi's sarcoma-associated herpesvirus ORF57 interacts with PYM to enhance viral intronless mRNA translation. EMBO Journal, 29, 1851-1864.
  2. Boyne, J.R., Jackson, B.R. & Whitehouse, A. (2010). KSHV ORF57 : Master regulator of mRNA biogenesis. Cell Cycle, 9, 2702-2703.
  3. Hiscox, J.A., Whitehouse, A. & Matthews, D.A. (2010). Nucleolar proteomics and viral infection. Proteomics, 10, 4077-4086.


  1. Gao, J., Coulson, J.M., Whitehouse, A. & Blake, N. (2009). Reduction in RNA levels rather than retardation of translation is responsible for the inhibition of MHC Class I antigen presentation by the glutamic acid rich repeat of Herpesvirus saimiri ORF73. Journal of Virology, 83, 273-282.
  2. Gould, F., Harrison, S.M., Hewitt, E.W. & Whitehouse, A. (2009). Kaposi's sarcoma-associated herpesvirus (KSHV) Rta promotes degradation of the Hey1 repressor protein through the ubiquitin proteasome pathway. Journal of Virology, 83, 6727-6738.
  3. Colgan, K.J., Boyne, J.R. & Whitehouse, A. (2009). Identification of a response element in a herpesvirus saimiri mRNA recognised by the ORF57 protein. Journal of General Virology, 90, 596-601.
  4. Colgan, K.J., Boyne, J.R. & Whitehouse, A. (2009). Uncoupling of hTREX components demonstrates that UAP56 and hTHO-complex recruitment onto herpesvirus saimiri intronless transcripts is required for replication. Journal of General Virology, 90, 1455 - 1460.
  5. Macnab, S. & Whitehouse, A. (2009). Progress and prospects: Artificial chromosomes. Gene Therapy, 16, 1180-1188.
  6. Boyne, J.R. & Whitehouse, A. (2009). Nucleolar disruption impairs Kaposi’s sarcoma-associated herpesvirus ORF57-mediated nuclear export of intronless viral mRNAs. FEBS Letters, 583, 3549-56.


  1. Boyne, J.R., Colgan, K.J. & Whitehouse, A. (2008). hTREX complex recruitment to Kaposi's sarcoma-associated herpesvirus intronless mRNA is essential for nuclear export. PLoS Pathogens, 4(10):e1000194.
  2. Harrison, S.M. & Whitehouse, A.(2008). Kaposi’s sarcoma associated herpesvirus (KSHV) Rta and cellular HMGB1 proteins synergistically transactivate the KSHV ORF50 promoter. FEBS Letters, 50, 3080-3084.
  3. Macnab, S., White, R.E., Hiscox, J.A. & Whitehouse, A. (2008). Production of an infectious Herpesvirus saimiri-based episomally maintained amplicon system. Journal of Biotechnology, 134, 287-296.
  4. Boyne, J.R. Colgan, K.J. & Whitehouse, A. (2008). Herpesvirus saimiri ORF57: a post-transcriptional regulatory protein. Frontiers in Bioscience, 13, 2928-2938.
  5. Griffiths, R., Harrison, S.M., Macnab, S. & Whitehouse, A. (2008). Mapping the minimal regions within the ORF73 protein required for Herpesvirus saimiri episomal persistence. Journal of General Virology, 89, 2843 – 2850.
  6. Emmott, E., Dove, B.K., Howell, G., Chappell, L., Reed, M.L., Boyne, J.R., You, J.H., Brooks, G., Whitehouse, A. & Hiscox, J.A. (2008). Viral nucleolar localisation signals determine dynamic trafficking within the nucleolus. Virology, 380, 191-202.


  1. Griffiths, R.A. & Whitehouse, A. (2007). The interaction between ORF 73 and MeCP2 is essential for HVS episomal persistence. Journal of Virology, 81, 4021-4032.
  2. Wilson, S.J., Tsao, E., Webb, B.L., Ye, H., Dalton-Griffin, L., Tsantoulas, C., Gale, C.V., Du, D., Whitehouse, A. & Kellam, P. (2007). XBP-1 transactivates the KSHV ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency. Journal of Virology, 81, 13578-13586.


  1. Boyne, J.R. & Whitehouse, A. (2006). Nucleolar trafficking is essential for nuclear export of intronless herpesvirus mRNAs. Proc. Natl. Acad. Sciences, USA, 103, 15190-15195.
  2. Boyne, J.R. & Whitehouse, A. (2006). Gamma-2 herpesvirus post-transcriptional gene regulation. Clinical Microbiology and Infection, 12, 110-117.
  3. Whitehouse, A. (2006). Gamma-2 Herpesvirus saimiri-based vectors, p 255-264. In Gene Transfer: Delivery and expression of DNA and RNA, a laboratory manual. Cold Spring Harbor Laboratory Press.
  4. Griffiths, R.A., Boyne, J.R. & Whitehouse, A. (2006). Herpesvirus saimiri-based gene delivery vectors. Current Gene Therapy, 6, 1-15.


  1. Williams, B., Boyne, J.R., Goodwin, D.J., Roaden, L.R., Wilson, S.A. & Whitehouse, A. (2005). The prototype gamma-2 herpesvirus nucleocytoplasmic shuttle protein, ORF 57,  transports viral RNA via the cellular mRNA export pathway. Biochemical Journal, 387, 295-308.
  2. Smith, P.G., Oakley, F., Fernandez, M., Mann, D., Lemoine, N.R. & Whitehouse, A. (2005). Herpesvirus saimiri-based vector biodistribution using non-invasive optical imaging. Gene Therapy, 12, 1465-1476.
  3. Wakenshaw, L., Walters, M.S. & Whitehouse, A. (2005). Herpesvirus saimiri Rta and cEBPa act synergistically to activate the DNA polymerase promoter. Journal of Virology, 79, 13548-13560.
  4. Walters, M.S. Hall, K.T. & Whitehouse, A. (2005). The herpesvirus saimiri Rta protein autostimulates via binding to a non-consensus response element. Journal of General Virology, 86, 581-587.
  5. Smith, P.G., Burchill, S.A., Brooke, D., Coletta, P.L. & Whitehouse, A. (2005). Efficient infection and persistence of a HVS-based gene delivery vector into human tumour xenografts and multicellular spheroid cultures. Cancer Gene Therapy, 12, 248-256.
  6. Calderwood, M.A., White, R.E. Griffiths, R.A. & Whitehouse, A. (2005). Open reading frame 73 is required for Herpesvirus saimiri All-S4 episomal persistence. Journal of General Virology, 86, 2703-2708.


  1. Walters, M.S., Hall, K.T. & Whitehouse, A. (2004). The HVS ORF 50 (Rta) Protein encodes an AT-Hook required for binding to the ORF 50 Response Element in delayed early promoters. Journal of Virology, 78, 4936-4942.
  2. Calderwood, M.A., Hall, K.T., Matthews, D.A. & Whitehouse, A. (2004). The Herpesvirus saimiri ORF 73 protein co-localises with host cell mitotic chromosomes and self associates via its C-terminus. Journal of General Virology, 85, 147-153.
  3. Calderwood, M.A. White, R.E. & Whitehouse, A. (2004). Development of herpesvirus-based episomally maintained gene delivery vectors. Expert Opinion on Biological Therapy, 4, 493-505.


  1. Giles, M.S., Smith, P.G., Coletta, P.L., Hall, K.T. & Whitehouse, A. (2003). HVS ORF 73 regulatory region provides long term transgene expression in human carcinoma cell lines. Cancer Gene Therapy, 10, 49-56.
  2. Whitehouse, A. (2003). Herpesvirus saimiri: a potential gene delivery vector. International Journal of Molecular Medicine, 11, 139-148.
  3. Goodwin, D.J., Walters, M.S. & Whitehouse, A. (2003). Gene regulation in the prototype gamma-2 herpesvirus. Current Topics in Virology, 3, 33-52.
  4. White, R.E. Calderwood, M.A. & Whitehouse, A. (2003). Generation and precise modification of a herpesvirus saimiri BAC demonstrates that the terminal repeats are required for both virus production and episomal persistence. Journal of General Virology, 84, 3393-3403.


  1. Hall, K.T., Giles, M.S., Calderwood, M.A., Goodwin, D.J., Matthews, D.A. &  Whitehouse, A. (2002). The Herpesvirus saimiri ORF 73 gene product interacts with the cellular protein, p32. Journal of Virology, 76, 11612-11622.


  1. Goodwin, D.J., Walters, M.S., Smith, P.G., Thurau, M., Fickenscher, H. & Whitehouse, A. (2001). The Herpesvirus saimiri Rta / ORF 50 protein reactivates the lytic replication cycle in a persistently infected A549 cell line. Journal of Virology 75, 4008-4013.
  2. Goodwin, D.J. & Whitehouse, A. (2001). A gamma-2 herpesvirus nucleocytoplasmic shuttle protein interacts with importin a-1 and importin a-5. Journal of Biological Chemistry, 276, 19905-19912.
  3. Smith, P.G., Coletta, P.L. Markham, A.F. & Whitehouse, A. (2001). In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector. Gene Therapy, 8, 1762-1769.


  1. Hall, K.T., Giles, M.S., Goodwin, D.J., Calderwood, M.A., Carr, I.M., Stevenson, A.J., Markham, A.F. &  Whitehouse, A. (2000). Analysis of gene expression in a human cell line stably transduced with Herpesvirus saimiri. Journal of Virology 74, 7331-7337.
  2. Stevenson, A.J., Clarke, D., Meredith, D.M., Kinsey, S.E., Whitehouse, A. & Bonifer, C. (2000). Herpesvirus saimiri-based gene therapy vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitroGene Therapy  7, 464-471.
  3. Thurau, M., Whitehouse A., Wittmann, S., Meredith, D.M. & Fickenscher, H. (2000). Distinct transcriptional and functional properties of the R transactivator gene, ORF 50, of the transforming Herpesvirus saimiri strain C488. Virology 268, 167-177.
  4. Stevenson, A.J., Frolova-Jones, E., Hall, K.T., Kinsey, S.E., Markham, A.F., Whitehouse, A. & Meredith, D.M. (2000). A Herpesvirus saimiri-based gene therapy vector with potential for use in cancer immunotherapy. Cancer Gene Therapy 7, 1077-1085.
  5. Goodwin, D.J., Hall, K.T., Giles, M.S., Calderwood, M.A., Markham, A.F. & Whitehouse, A. (2000). The carboxy-terminus of the Herpesvirus saimiri ORF 57 gene contains domains that are required for transactivation and transrepression. Journal of General Virology 81, 2253-2265.
  6. Hall, K.T., Giles, M.S., Goodwin, D.J., Calderwood, M.A., Markham, A.F. & Whitehouse, A. (2000). Characterisation of the Herpesvirus saimiri ORF 73 gene product. Journal of General Virology 81, 2653-2658.
  7. Stevenson, A.J., Giles, M.S., Hall, K.T., Goodwin, D.J., Calderwood, M.A., Markham, A.F. & Whitehouse, A. (2000). Specific oncolytic activity of Herpesvirus saimiri in pancreatic cancer cells. British Journal of Cancer 83, 329-332.


  1. Hall, K.T., Stevenson, A.J., Goodwin, D.J., Gibson, P.C., Markham, A.F. &  Whitehouse, A. (1999). The activation domain of the Herpesvirus saimiri R protein interacts with the TATA-binding protein. Journal of Virology 73, 9756-9763.
  2. Goodwin, D.J., Hall, K.T., Stevenson, A.J., Markham, A.F. & Whitehouse, A. (1999). The ORF 57 gene product of Herpesvirus saimiri shuttles between the nucleus and cytoplasm and is involved in viral RNA nuclear export. Journal of Virology 73, 10519-10524.
  3. Cooper, M., Goodwin, D.J., Hall, K.T., Stevenson, A.J., Meredith, D.M., Markham, A.F. & Whitehouse, A. (1999). The gene product encoded by ORF 57 of HVS regulates the redistribution of the splicing factor, SC-35. Journal of General Virology 80, 1311-1316. 
  4. Bello, L.J., Davison, A.J., Glenn, M., Whitehouse, A. Rethmeier, N., Schulz, T.F. & Clements, J.B. (1999). The human herpesvirus type-8 ORF 57 gene and its properties. Journal of General Virology  80, 3207-3215.
  5. Whitehouse, A. & Meredith, D.M. (1999). Identification and analysis of transacting proteins involved in the regulation of DNA virus gene expression, p. 157-175. In DNA viruses: A Practical Approach, Oxford University Press.
  6. Whitehouse, A. & Stevenson, A.J. (1999). Gene regulation in Herpesvirus saimiri and its implication towards the development of a novel gene therapy vector. Gene Therapy and Molecular Biology 3, 35-44.
  7. Stevenson, A.J., Cooper, M., Griffiths, J.C., Gibson, P.G., Whitehouse, A., Jones, E.F., Kinsey, S.E., Markham, A.F. & Meredith, D.M. (1999). Assessment of Herpesvirus saimiri as a potential human gene therapy vector. Journal of Medical Virology 57, 269-277.


  1. Whitehouse, A., Cooper, M. & Meredith, D.M. (1998). The IE gene product encoded by ORF 57 of Herpesvirus saimiri  modulates gene expression at a post-transcriptional level. Journal of Virology 72, 857-861.
  2. Whitehouse, A., Cooper, M., Hall, K.T. & Meredith, D.M. (1998). The ORF 50a gene product regulates ORF 57 gene expression in Herpesvirus saimiri. Journal of Virology 72, 1967-1973.
  3. Whitehouse, A., Meredith, D.M. & Markham, A.F. (1998). Mismatch repair genes and their association with colorectal cancer. International Journal of Molecular Medicine 1, 469-474.
  4. Carr, I.M., Whitehouse, A., Coletta, P.L. & Markham, A.F. (1998). Characterisation of the human sorbitol dehydrogenase gene duplication by evolutionary comparison with the marmoset sequence. Mammalian Genome 9, 1042-1048.


  1. Whitehouse, A., Carr, I.M., Griffiths, J.C. & Meredith, D.M. (1997). The herpesvirus saimiri ORF 50 gene encoding a major transcriptional activator homologous to the EBV R protein, is transcribed from two distinct promoters of different temporal phases. Journal of Virology 71, 2550-2554. 
  2. Whitehouse, A., Stevenson, A.J., Cooper, M. & Meredith, D.M. (1997).  Identification of a cis-acting element within the herpesvirus saimiri ORF6 promoter that is responsive to the HVS.R transactivator. Journal of General Virology 78, 1411-1415.
  3. Whitehouse, A., Deeble, J., Taylor, G.R., Guillou, P.J., Phillips, S.E.V., Meredith, D.M. & Markham, A.F. (1997).  Mapping the minimal domain of hMSH2 sufficient for binding mismatched oligonucleotides. Biochem. Biophys. Res. Commun. 232, 10-13.
  4. Whitehouse, A., Deeble, J., Parmar, R., Taylor, G.R., Markham, A.F. & Meredith, D.M. (1997).  Analysis of the mismatch and insertion/deletion binding properties of Thermus thermophilus, HB8, MutS.  Biochem. Biophys. Res. Commun. 233, 834-837.


  1. Whitehouse, A., Taylor, G.R., Deeble, J., Phillips, S.E.V., Meredith, D.M. & Markham, A.F. (1996).  A carboxy terminal domain of the hMSH2 gene product is sufficient for binding specific mismatched oligonucletides.  Biochem. Biophys. Res. Commun. 225, 289-295.
  2. Whitehouse, A., Parmar, R., Deeble, J., Taylor, G.R., Phillips, S.E.V., Meredith, D.M. & Markham, A.F. (1996). Mutational analysis of the nucleotide binding domain of the mismatch repair enzyme, hMSH2. Biochem. Biophys. Res. Commun. 229, 147-153.
  3. Norris, A.L., Bailey, A., Askham, J., Whitehouse, A., Clissold, P.M., Markham, A.F. & Meredith, D.M. (1996). Characterization of the human B catenin gene. Mammalian Genome 7, 160-162